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Abstract—A system comprising TiCl4 and t-BuNH2 acts as a catalyst for highly regioselective hydroamination reactions of alkynes
using hydrazines and at the same time a Lewis acid in the transformation of the generated hydrazones into indole derivatives, while a
1,3-diyne is converted to pyrroles using the same precatalyst.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The occurrence of the indole subunit in biologically ac-
tive compounds has stimulated continued strong interest
in practical syntheses of the indole scaffold.1 Despite re-
cently developed methodologies, such as palladium-cat-
alyzed transformations,2 the classical Fischer-indole
cyclization3 remains one of the most important ap-
proaches. Traditionally, the required hydrazones are
generated via condensation of the corresponding carbo-
nyl compound with a hydrazine derivative. Recently,
Odom and co-workers presented an elegant, atom-eco-
nomical approach to the indole framework based on
intermolecular titanium4 amide-catalyzed hydroamina-
tion reactions1d,5 of alkynes with 1,1-disubstituted
hydrazines, followed by a cyclization employing 3–
5equiv ZnCl2.

6 Based on this methodology, Beller and
co-workers described a one-pot tryptamine synthesis
via hydroamination of terminal chloroalkylalkynes.7

For the majority of substrate combinations, in particu-
lar internal alkynes, a subsequent addition of 3–5equiv
ZnCl2 is necessary to convert the generated hydrazone
into the corresponding indole.6,7b Recently, we reported
procedures for the intermolecular hydroamination of
alkynes8 and norbornene,9 using the inexpensive
Lewis-acid TiCl4 as the precatalyst. Consequently, we
wondered if the addition of the Lewis-acid ZnCl2 could
be circumvented through the use of our TiCl4-based
methodology. Herein, we present a user-friendly system
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comprising commercially available TiCl4 and t-BuNH2

for the transformation of hydrazines and unsymmetri-
cally substituted alkynes into indoles in a highly regiose-
lective fashion.10 Furthermore, the scope of a pyrrole
synthesis based on a TiCl4-catalyzed hydroamination
of 1,3-diynes is evaluated.
2. Results and discussion

The system generated through the addition of t-BuNH2

to a solution of TiCl4 in toluene catalyzed the addition
of 1,1-disubstituted hydrazines onto aryl- and alkyl-sub-
stituted alkynes efficiently (Scheme 1, Table 1).11 For
most examples the corresponding hydrazone was not
observed according to GC/MS-analysis, but was directly
N
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Scheme 1. TiCl4/t-BuNH2-catalyzed regioselective indole synthesis.
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Table 1. TiCl4-catalyzed indole synthesis

Entry R1 R2 R3 Product Isolated yielda (%)

1 A Ph Ph Ph
N
Ph

Ph

Ph

55

2 B Ph H Ph
N
Ph

H

Ph

71b

3 A Ph Et Ph
N
Ph

Et

Ph

63c

4 B Ph n-Hex 4-(CF3)C6H4

N
Ph

n-Hex

CF3

76

5 B Ph n-Hex 4-MeOC6H4

N
Ph

n-Hex

OMe

70

6 B Ph n-Bu 4-ClC6H4

N
Ph

n-Bu

Cl

62

7 A Me Et Ph
N
Me

Et

Ph

73

8 C Me n-Hex 3-(CF3)C6H4

N
Me

n-Hex

CF3

71

9 C Me n-Bu 4-ClC6H4

N
Me

n-Bu

Cl

57
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Table 1 (continued)

Entry R1 R2 R3 Product Isolated yielda (%)

10 C Me n-Hex 4-BrC6H4

N
Me

n-Hex

Br

66

11 C Me (CH2)4Cl Ph
N
Me

Ph
Cl

4
52

a Reaction conditions: 1.0mmol alkyne, 1.0–3.0mmol hydrazine, 2mL PhMe, 24–48h; A: 30mol% TiCl4, B: 40–50mol% TiCl4, C: 1.00equiv TiCl4.
b At 75�C.
c Using Ph2NNH3Cl.
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converted to the indole derivative. While catalytic quan-
tities of TiCl4 were sufficient for quantitative conversion
of alkynes using 1,1-diphenylhydrazine (entries 1–6),
stoichiometric amounts proved beneficial for the synthe-
sis of N-methyl substituted indoles (entries 8–11). Termi-
nal alkynes were more reactive substrates, providing
quantitative conversion of the alkyne even at 75 �C
(entry 2).12 Also a hydrazine hydrochloride gave the cor-
responding indole with good isolated yield through the
use of an excess of t-BuNH2 (entry 3).

The hydroamination of unsymmetrically substituted
alkynes proceeded with excellent regioselectivity, giving
rise to a single regioisomer as judged by GC/MS-analy-
sis of the crude reaction mixture (entries 2–11). A variety
of different functional groups, such as CF3- (entries 4
and 8), MeO- (entry 5), Cl- (entries 6 and 9) and Br-sub-
stituents (entry 10) were tolerated, which enables further
elaboration of the products. Interestingly, a chloro-
alkylalkyne proved compatible with our reaction condi-
tions, without any evidence of nucleophilic substitution
(entry 11).7 Although dodeca-5,7-diyne was quantita-
tively converted under analogous reaction conditions,
the corresponding N-phenyl-substituted indole was only
isolated in a yield of 16%. We considered pyrrole forma-
tion via a sequence consisting of hydroamination and
subsequent 5-endo cyclization as a potential reason for
the low yield in the indole synthesis.

We probed our hypothesis by subjecting different aniline
derivatives and dodeca-5,7-diyne to the reaction condi-
NH2
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Scheme 2. TiCl4/t-BuNH2-catalyzed pyrrole synthesis using a 1,3-

diyne.
tions (Scheme 2). With the in situ generated catalyst,
the diyne was quantitatively converted at 105 �C.13

Along with products stemming from hydroamination
of both triple bonds, the corresponding pyrroles were
formed as the major product and obtained in 30% iso-
lated yield.14
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